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Recent analyses of the fragment yields from the break up of
excited nuclei have provided a measure of the phase diagram
of nuclear matter [1]. Central to that analysis was Fisher’s
droplet model which describes the condensation of clusters or
droplets in a low density vapor [2]. Fisher’s model has also
been shown to describe the cluster yields in both geometrical
cluster models (percolation [4]) and thermal models (the Ising
model [3]).

At liquid-vapor coexistence Fisher’s model gives the yield
of clusters with surface area s at a given temperature T as

ns(T ) µ g(s)exp(−ws/T ) (1)

where g(s) is proportional to the degeneracy of clusters of a
given surface area and w is the surface tension and the sec-
ond factor is the Boltzmann factor associated with the surface
energy of the cluster.

From a study of the combinatorics of lattice gas clusters
in two dimensions Fisher suggested that g(s) would be the
number of polygons of perimeter s given by

g(s) µ s−x exp(vs) (2)

where x is some general exponent set by the Euclidian dimen-
sion and v is the surface entropy tension. A direct counting
of such in Fig. 1 bears out Fisher’s estimate.
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FIG. 1: Degeneracy factor for polygons on the square lattice.

Clusters can also be counted by their number of constituents
A to give g(s,A). The relationship between A and s can be
studied from the most probable s at for a given value of A at
a given temperature from g(s,A)exp(−ws/T ). For compact
cluster it is expected that s µ Ad−1/d where d is the Euclid-
ian dimension while for more diffuse clusters s µ As where s
is some exponent relating the cluster’s surface to its volume.
Figure 2 shows the behavior of s(A,T ) using the polygon com-
binatoric and the Boltzmann factor.

Fitting the most probable s(A,T ) to a0(T )As(T ) gives the
effective surface to volume ration for the clusters as a function
of temperature. Figure 3 shows s(T ) and the fractal dimen-
sion of the cluster DF(T ) = 1/s(T ) [4].

At low temperatures the clusters are most compact and
s ∼ 1/2 while the fractal dimension is approximately equal
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FIG. 2: The most probable surface as a function of cluster number
and temperature.
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FIG. 3: The effective surface to volume exponent (s(T), top) and
fractal dimension (DF(T ), bottom) of small clusters as a function of
temperature.

to the Euclidian dimension. As the temperature increases the
value of s increases and the fractal dimension decreases. This
signals an increasing contribution to the“surface” of the clus-
ter from its volume. At the highest temperatures the value of
s and the fractal dimension are near unity indicating that the
most probable configuration for a cluster is that of a “string”
of A constituents.
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